Intercellular calcium signaling in a gap junction-coupled cell network establishes asymmetric neuronal fates in C. elegans.

نویسندگان

  • Jennifer A Schumacher
  • Yi-Wen Hsieh
  • Shiuhwei Chen
  • Jennifer K Pirri
  • Mark J Alkema
  • Wen-Hong Li
  • Chieh Chang
  • Chiou-Fen Chuang
چکیده

The C. elegans left and right AWC olfactory neurons specify asymmetric subtypes, one default AWC(OFF) and one induced AWC(ON), through a stochastic, coordinated cell signaling event. Intercellular communication between AWCs and non-AWC neurons via a NSY-5 gap junction network coordinates AWC asymmetry. However, the nature of intercellular signaling across the network and how individual non-AWC cells in the network influence AWC asymmetry is not known. Here, we demonstrate that intercellular calcium signaling through the NSY-5 gap junction neural network coordinates a precise 1AWC(ON)/1AWC(OFF) decision. We show that NSY-5 gap junctions in C. elegans cells mediate small molecule passage. We expressed vertebrate calcium-buffer proteins in groups of cells in the network to reduce intracellular calcium levels, thereby disrupting intercellular communication. We find that calcium in non-AWC cells of the network promotes the AWC(ON) fate, in contrast to the autonomous role of calcium in AWCs to promote the AWC(OFF) fate. In addition, calcium in specific non-AWCs promotes AWC(ON) side biases through NSY-5 gap junctions. Our results suggest a novel model in which calcium has dual roles within the NSY-5 network: autonomously promoting AWC(OFF) and non-autonomously promoting AWC(ON).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Innexin-Dependent Cell Network Establishes Left-Right Neuronal Asymmetry in C. elegans

Gap junctions are widespread in immature neuronal circuits, but their functional significance is poorly understood. We show here that a transient network formed by the innexin gap-junction protein NSY-5 coordinates left-right asymmetry in the developing nervous system of Caenorhabditis elegans. nsy-5 is required for the left and right AWC olfactory neurons to establish stochastic, asymmetric pa...

متن کامل

SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification

The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly under...

متن کامل

Connexins regulate calcium signaling by controlling ATP release.

Forced expression of gap junction proteins, connexins, enables gap junction-deficient cell lines to propagate intercellular calcium waves. Here, we show that ATP secretion from the poorly coupled cell lines, C6 glioma, HeLa, and U373 glioblastoma, is potentiated 5- to 15-fold by connexin expression. ATP release required purinergic receptor-activated intracellular Ca2+ mobilization and was inhib...

متن کامل

Mechanisms for the coordination of intercellular calcium signaling in insulin-secreting cells.

Insulin-mediated increases in cytosolic calcium are synchronized among the cells in a pancreatic islet, and result in pulsatile secretion of insulin. Pancreatic beta cells express the gap junction protein connexin43 and are functionally coupled, making gap junctional communication a likely mechanism for the synchronization of calcium transients among islet cells. To define the mechanism by whic...

متن کامل

Neuronal Target Identification Requires AHA-1-Mediated Fine-Tuning of Wnt Signaling in C. elegans

Electrical synaptic transmission through gap junctions is a vital mode of intercellular communication in the nervous system. The mechanism by which reciprocal target cells find each other during the formation of gap junctions, however, is poorly understood. Here we show that gap junctions are formed between BDU interneurons and PLM mechanoreceptors in C. elegans and the connectivity of BDU with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 139 22  شماره 

صفحات  -

تاریخ انتشار 2012